Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 100

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Horonobe Underground Research Laboratory Project Investigation Report for the 2022 Fiscal Year

Nakayama, Masashi

JAEA-Review 2023-032, 159 Pages, 2024/02

JAEA-Review-2023-032.pdf:19.37MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2022, we continued R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". These are identified as key R&D on challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on near- field system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C" were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behaviour of sedimentary rock to natural perturbations" was also implemented in two areas, "evaluation of intrinsic buffering against endogenic and exogenic processes" and "development of techniques for evaluating excavation damaged zone (EDZ) self-sealing behaviour after backfilling". The Horonobe International Project (HIP) was initiated in February 2023 to promote research and development in collaboration with national and international organizations.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2023 fiscal year

Nakayama, Masashi

JAEA-Review 2023-019, 70 Pages, 2023/11

JAEA-Review-2023-019.pdf:6.83MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2023, we continue R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we conduct the coupled analysis on the full-scale engineered barrier system performance experiment and test the coupled simulation code through comparison with different simulation codes in the international DECOVALEX-2023 collaboration project. Borehole investigations are also carried out for solute transport experiments in the Koetoi Formation. As for "Demonstration of repository design concept", we carry out in situ experiments and data analysis on concrete deterioration under the subsurface conditions. Geophysical surveys are also carried out around an experimental tunnel to be newly excavated at the 350m gallery and characterise the initial conditions of the excavation damaged zone. For the "Understanding of buffering behaviour of sedimentary rocks to natural perturbations", we analyse the results of the hydraulic disturbance tests conducted in previous years and understand the relationship between rock stress / stress state and fault / fracture hydraulic connectivity. Concerning the construction and maintenance of the subsurface facilities, the 350 m gallery is extended and shafts are sank to a depth of 500 m.

Journal Articles

Impact of MOX fuel use in light-water reactors; Long-term radiological consequences of disposal of high-level waste in a geological repository

Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

Journal Articles

Study on borehole sealing corresponding to hydrogeological structures by groundwater flow analysis

Sawaguchi, Takuma; Takai, Shizuka; Sasagawa, Tsuyoshi; Uchikoshi, Emiko*; Shima, Yosuke*; Takeda, Seiji

MRS Advances (Internet), 8(6), p.243 - 249, 2023/06

In the intermediate depth disposal of relatively high-level radioactive waste, a method to confirm whether the borehole for monitoring is properly sealed should be developed in advance. In this study, groundwater flow analyses were performed for the hydrogeological structures with backfilled boreholes, assuming sedimentary rock area, to understand what backfill design conditions could prevent significant water pathways in the borehole, and to identify the confirmation points of borehole sealing. The results indicated the conditions to prevent water pathways in the borehole and BDZ (Borehole Disturbed Zone), such as designing the permeability of bentonite material less than or equal to that of the host rock, and grouting BDZ.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2022 fiscal year

Nakayama, Masashi

JAEA-Review 2022-026, 66 Pages, 2022/11

JAEA-Review-2022-026.pdf:12.31MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In fiscal year 2022, we continue to conduct research on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations", which are the important issues shown in the Horonobe underground research plan from fiscal year 2020. The main studies to be conducted in fiscal year 2022 are as follows. As "Study on near-field system performance in geological environment", we will continue to the test under the simulated condition in which the heat generation by the high-level radioactive waste has subsides in the full-scale engineered barrier system (EBS) performance experiment. We will also conduct solute transport experiment with model testing that take into account the effects of organic matter, microbes, and colloids, and initiate borehole investigation to evaluate solute transport experiments on fractures distribute in Koetoi formation. As "Demonstration of repository design concept", we will continue experiment and analysis of concrete deterioration in the underground environment as a demonstration of remote technique for emplacement and retrievable. As a demonstration of the closure techniques, laboratory tests will be continued to investigate the mechanism of bentonite runoff behaviour, which could be a factor in changing the performance of backfill material, and to expand data on swelling and deformation behaviour. In addition, in-situ borehole closure tests will be conducted to evaluate the applicability of the closure method. As "Understanding of buffering behaviour of

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2022-025, 164 Pages, 2022/11

JAEA-Review-2022-025.pdf:12.25MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA). The main aim of this project is to enhance the reliability of relevant disposal technologies for geological disposal of high-level radioactive waste through a comprehensive research and development (R&D) program in the deep geological environment within the host sedimentary rock at Horonobe in Hokkaido, north Japan. In fiscal year 2021, we continued R&D on three important issues specified in the "Horonobe Underground Research Plan from Fiscal Year 2020", which involve "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on near-field system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C' were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behaviour of sedimentary rock to natural perturbations" was also implemented in two areas, "evaluation of intrinsic buffering against endogenic and exogenic processes" and "development of techniques for evaluating excavation damaged zone (EDZ) self-sealing behaviour after backfilling". The results of the R&D, along with those obtained in other departments of JAEA, will reinforce the technical basis for both repository implementation and safety regulation. For the sake of this, we will steadily proceed with this project in collaboration with relevant organizations and universities both domestically and internationally and also widely publish the plans and results of the R&D to ensure their transparency and technical reliability.

Journal Articles

Evolution of the reaction and alteration of granite with Ordinary Portland cement leachates; Sequential flow experiments and reactive transport modelling

Bateman, K.*; Murayama, Shota*; Hanamachi, Yuji*; Wilson, J.*; Seta, Takamasa*; Amano, Yuki; Kubota, Mitsuru*; Ouchi, Yuji*; Tachi, Yukio

Minerals (Internet), 12(7), p.883_1 - 883_20, 2022/07

 Times Cited Count:0 Percentile:0.02(Geochemistry & Geophysics)

Journal Articles

Current status of Geological disposal by "all-Japan" activities, 6; Post-closure safety assessment (2)

Tachi, Yukio; Saito, Takumi*; Kirishima, Akira*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(5), p.290 - 295, 2022/05

no abstracts in English

JAEA Reports

Development of JAEA sorption database (JAEA-SDB); Update of sorption/QA data in FY2021

Sugiura, Yuki; Suyama, Tadahiro*; Tachi, Yukio

JAEA-Data/Code 2021-017, 58 Pages, 2022/03

JAEA-Data-Code-2021-017.pdf:1.98MB

Sorption behavior of radionuclides (RNs) in buffer materials (bentonites), rocks and cementitious materials is one of the key processes in a safe geological disposal of radioactive waste because RNs migration in these materials is expected to be retarded by the sorption process. Therefore, it is necessary to understand the sorption process and develop a database compiling reliable data and mechanistic/predictive models so that reliable parameters can be set under a variety of geochemical conditions relevant to a performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed the database of sorption parameters in bentonites, rocks and cementitious materials. This sorption database (SDB) was firstly developed as an important basis for the H12 PA of a high-level radioactive waste disposal, and have been provided through the Web. JAEA has continued to improve and update the SDB in the view of potential future needs of data focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to the PA-related parameter setting. This report focuses on updating of the sorption database (JAEA-SDB) as a basis of integrated approach for the PA-related distribution coefficient (Kd) setting and development of mechanistic sorption models. This report also includes an overview of the database structure and contents. Kd data and their quality assurance (QA) results were updated from literature collected with wider ranges. As a result, 8,503 Kd data from 70 references related to the above-mentioned systems were added and the total number of Kd values in JAEA-SDB reached 79,072. The QA/classified Kd data reached about 75.4% for all Kd data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to give a basis for the next-step PA-related Kd setting.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2020 fiscal year

Nakayama, Masashi

JAEA-Review 2021-053, 133 Pages, 2022/02

JAEA-Review-2021-053.pdf:14.45MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA). The main aim of this project is to enhance the reliability of relevant disposal technologies for geological disposal of high-level radioactive waste through a comprehensive research and development (R&D) program in the deep geological environment within the host sedimentary rock at Horonobe in Hokkaido, north Japan. In fiscal year 2020, JAEA continued R&D on three important issues specified in the "Horonobe Underground Research Plan from Fiscal Year 2020", which involve "Study on nearfield system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behavior of sedimentary rock to natural perturbations". Specifically, 'full scale engineered barrier system (EBS) experiment' and 'solute transport experiment' were carried out as part of "Study on near-field system performance in geological environment". 'Development and testing of EBS emplacement / retrieval and tunnel closure technologies' and 'evaluation of EBS behavior over 100$$^{circ}$$C' were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behavior of sedimentary rock to natural perturbations" was also implemented in two areas, 'evaluation of hydromechanical responses of faults to water pressure changes' and 'development of techniques for evaluating self-sealing behavior of an excavation damaged zone after backfilling'. The results of the R&D, along with those obtained in other departments of JAEA, will reinforce the technical basis for both repository implementation and safety regulation. For the sake of this, JAEA will steadily proceed with this project in collaboration with relevant organizations and universities both domestically and internationally and also widely publish the plans and results of the R&D to ensure their transparency and technical reliability.

Journal Articles

Evolution of the reaction and alteration of mudstone with ordinary Portland cement leachates; Sequential flow experiments and reactive-transport modelling

Bateman, K.; Murayama, Shota*; Hanamachi, Yuji*; Wilson, J.*; Seta, Takamasa*; Amano, Yuki; Kubota, Mitsuru*; Ouchi, Yuji*; Tachi, Yukio

Minerals (Internet), 11(9), p.1026_1 - 1026_23, 2021/09

 Times Cited Count:2 Percentile:23.36(Geochemistry & Geophysics)

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2021-009, 54 Pages, 2021/07

JAEA-Review-2021-009.pdf:5.02MB

The Horonobe URL Project is being pursued by the JAEA to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In 2021 fiscal year (2021/2022), JAEA continue to conduct research on "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism", which are the important issues shown in the Horonobe underground research plan after 2020 fiscal year. The main studies to be conducted in 2021 fiscal year are as follows. As "Demonstration of EBS in geological environment", we will shift to the test under the condition that the influence of heating is eliminated in the full scale EBS experiment. As "Demonstration of disposal concept", as a demonstration of the closure techniques, it details the conditions under which long-term transitions in the tunnel and surrounding bedrock have a significant impact on safety assessments. And we will continue engineering scale experiment to confirm the workability and performance of plugs and laboratory tests to examine the interaction between backfilling materials and buffer materials. As "Validation of buffer capacity of the sedimentary rock to tectonism", we will analyze the results of the hydraulic disturbance test and continue to study the hydraulic disconnection of faults/fissures in the Wakkanai Formation. As an advancement of technology for investigating and evaluating areas where the flow of groundwater is extremely slow, a boring exploration will be conducted to confirm the three-dimensional distribution of the fossil seawater area.

Journal Articles

The Impact of cement on argillaceous rocks in radioactive waste disposal systems; A Review focusing on key processes and remaining issues

Wilson, J.*; Bateman, K.; Tachi, Yukio

Applied Geochemistry, 130, p.104979_1 - 104979_19, 2021/07

 Times Cited Count:13 Percentile:59.93(Geochemistry & Geophysics)

The concept of deep geological disposal will include the multiple use of cement-based materials. In the case of argillaceous host rocks, the presence of hyperalkaline cement porefluid results in the destabilization of primary minerals in the argillite, resulting in the development of a zone of alteration at cement-rock interfaces. The process understanding gained from experimental, analogue, and modelling studies has been reviewed, and remaining areas of uncertainty identified. Although there is a reasonably good understanding of the mineral assemblages that are likely to occur due to cement-rock interactions, there are still some areas where a degree of uncertainty remains, in particular: the evolution of cement-argillite interfaces at T $$>$$ 25$$^{circ}$$C; the rates at which secondary minerals form; the extent of pore clogging due to secondary mineral precipitation; the implications of alteration for radionuclide transport.

JAEA Reports

A Numerical simulation study of the desaturation and oxygen infusion into the sedimentary rock around the tunnel in the Horonobe Underground Research Laboratory

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

JAEA-Data/Code 2021-002, 26 Pages, 2021/05

JAEA-Data-Code-2021-002.pdf:2.14MB
JAEA-Data-Code-2021-002-appendix(CD-ROM).zip:40.99MB

Investigations employing numerical simulation have been conducted to study the mechanisms of desaturation and oxygen infusion into sedimentary formations. By mimicking the conditions of the Horonobe underground research laboratory, numerical simulations aided geoscientific investigation of the effects of dissolved gas content and rock permeability on the desaturation (Miyakawa et al., 2019) and mechanisms of oxygen intrusion into the host rock (Miyakawa et al., 2021). These simulations calculated multi-phase flow, including flows of groundwater and exsolved gas, and conducted sensitivity analysis changing the dissolved gas content, rock permeability, and humidity at the gallery wall. Only the most important results from these simulations have been reported previously, because of publishers' space limitations. Hence, in order to provide basic data for understanding the mechanisms of desaturation and oxygen infusion into rock, all data for 27 output parameters (e.g., advective fluxes of heat, gas, and water, diffusive fluxes of water, CH$$_{4}$$, CO$$_{2}$$, O$$_{2}$$, and N$$_{2}$$, saturation degree, water pressure, and mass fraction of each component) over a modeling period of 100 years are presented here.

JAEA Reports

JAEA-TDB-RN in 2020; Update of JAEA's thermodynamic database for solubility and speciation of radionuclides for performance assessment of geological disposal of high-level and TRU wastes

Kitamura, Akira

JAEA-Data/Code 2020-020, 164 Pages, 2021/03

JAEA-Data-Code-2020-020.pdf:3.11MB
JAEA-Data-Code-2020-020-appendix(DVD-ROM).zip:0.56MB

Part of JAEA's Thermodynamic Database (JAEA-TDB) for solubility and speciation of radionuclides (JAEA-TDB-RN) for performance assessment of geological disposal of high-level radioactive and TRU wastes has been updated with subsuming the database for geochemical calculations (JAEA-TDB-GC). This report has focused to update JAEA-TDB-RN after selecting change in standard Gibbs free energy of formation ($$Delta_{rm r}$$$$G^{circ}_{rm m}$$), change in standard enthalpy change of formation ($$Delta$$$$H$$$$^{circ}$$$$_{rm m}$$), standard molar entropy ($$S^{circ}$$$$_{rm m}$$) and, heat capacity ($$C^{circ}_{rm p}$$), change in standard Gibbs free energy of reaction ($$Delta_{rm r}G^{circ}$$$$_{rm m}$$), change in standard enthalpy change of reaction ($$Delta$$$$_{rm r}$$$$H$$$$^{circ}$$$$_{rm m}$$) and standard entropy change of reaction ($$Delta_{rm r}S^{circ}_{rm m}$$) as well as logarithm of equilibrium constant (log$$_{10}$$$$K^{circ}$$) at standard state. The extent of selection of these thermodynamic data enables to evaluate solubility and speciation of radionuclides at temperatures other than 298.15 K. Furthermore, the latest thermodynamic data for iron which have been critically reviewed, selected and compiled by the Nuclear Energy Agency within Organisation for Economic Co-operation and Development (OECD/NEA) have been accepted. Most of previously selected log$$_{10}$$$$K^{circ}$$ have been refined to confirm internal consistency with JAEA-TDB-GC. Text files of the updated JAEA-TDB have been provided for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Development of evaluation method for diffusion and filtration behavior of colloid in compacted bentonites using dendrimers

Endo, Takashi*; Tachi, Yukio; Ishidera, Takamitsu; Terashima, Motoki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(1), p.9 - 22, 2021/03

Evaluation method of colloid diffusion and filtration in compacted bentonites was developed using dendrimers. Diffusion and filtration behavior of PAMAM dendrimers with the size of 5.7$$sim$$7.2nm was investigated by the through-diffusion experiment in bentonite compacted to 0.8 Mg/m$$^{3}$$ and saturated with 0.005$$sim$$0.5mol/L NaCl. Effective diffusivities (De) and filtration ratios (Rf) of dendrimers were determined from the breakthrough curves and the depth profiles in compacted bentonite, respectively. The De values of negatively charged dendrimer increased when porewater salinity increased and dendrimer size decreased as influenced by anion exclusion effect in negatively charged clay surfaces. The Rf values increased when porewater salinity decreased and dendrimer size increased, demonstrating significant fractions of dendrimer were filtered by narrow pores in complex pore networks. These trends consistent with the previous studies emphasize the validity of the evaluation method using dendrimer.

Journal Articles

Prediction of thermodynamic data for radium suitable for thermodynamic database for radioactive waste management using an electrostatic model and correlation with ionic radii among alkaline earth metals

Kitamura, Akira; Yoshida, Yasushi*

Journal of Radioanalytical and Nuclear Chemistry, 327(2), p.839 - 845, 2021/02

 Times Cited Count:3 Percentile:45.99(Chemistry, Analytical)

Thermodynamic data for radium for radioactive waste management have been predicted using an electrostatic model and correlation with the ionic radii of the alkaline earth metals. Estimation of the standard Gibbs free energy of formation and standard molar entropy of aqueous radium species and compounds has been based on such approaches as extrapolation of the thermodynamic properties of strontium and barium, and use of a model of ion pair formation. The predicted thermodynamic data for radium have been compared with previously reported values.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2019 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-042, 116 Pages, 2021/01

JAEA-Review-2020-042.pdf:10.33MB

The Horonobe Underground Research Laboratory Project will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2019 fiscal year (2019/2020). The investigations, which are composed of "Geoscientific research" and "R and D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2019 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

Journal Articles

Numerical simulation of oxygen infusion into desaturation resulting from artificial openings in sedimentary formations

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.609 - 614, 2021/01

Desaturation is expected due to excavation of an underground repository, especially in the newly created fractures zone (EDZ). During the construction and operation of facilities, the air in the gallery infuses into the rock around the gallery though the excavation affected area and causes oxidation of host rock and groundwater, which increase nuclide mobilities. In the Horonobe underground research laboratory (HURL), which is excavated in the Neogene sedimentary formations, no pyrite dissolution or precipitation of calcium sulfates was found from the cores drilled in the rock around the gallery. The reason for no oxidation is estimated that the release of dissolved gases from groundwater due to pressure decrease flows against the air infusion. In this research, the mechanism of O$$_{2}$$ intrusion into the rock was investigated by numerical multiphase flow simulation considering advection and diffusion of groundwater and gases. In the simulation, only Darcy's and Henry's laws were considered, that is, chemical reaction related to oxidation was not handled. The effects of dissolved gas and rock permeability on O$$_{2}$$ infusion into the rock were almost identical. Decreasing humidity with relatively low permeability leads to extensive accumulation of O$$_{2}$$ into the EDZ even though with a relatively large amount of dissolved gas. In the HURL, the shotcrete attenuates O$$_{2}$$ concentration and keeps 100% humidity at the boundary of the gallery wall, which inhibits O$$_{2}$$ infusion. Without the shotcrete, humidity at the gallery wall decreases according to seasonal changes and ventilation, which promotes O$$_{2}$$ intrusion into the EDZ but the chemical reaction related to O$$_{2}$$ buffering such as pyrite oxidation consumes O$$_{2}$$.

Journal Articles

Methodology development and determination of solubility-limiting solid phases for a performance assessment of geological disposal of high-level radioactive and TRU wastes

Kitamura, Akira; Yoshida, Yasushi*; Goto, Takahiro*; Shibutani, Sanae*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.58 - 71, 2020/12

Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey should be performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions.

100 (Records 1-20 displayed on this page)